By Leo Braack, Co-Chair of APMEN Vector Control Working Group; Senior Vector Control Specialist from Malaria Consortium

After many thousands of years of unabated onslaught by malaria decimating human populations across the world, convinced that the fevers originated from bad air associated with swamplands, Ronald Ross made the momentous discovery in 1897 that it was mosquitoes that transmitted this most unforgiving and rapidly deadly of afflictions. Since that year, humanity has relied on vector control as the most effective strategy to reduce the intensity of transmission and disease.

At first, we relied on control of larvae and breeding sites, then in the mid-19th century we sprayed massive amounts of the insecticide DDT and made considerable advances in tamping down malaria, at least until mosquitoes developed resistance to the chemical. By the 1990s we had found new optimism to think we might just be able to control malaria, which by 2007 developed into full-blown ambitions to eradicate the disease, our hopes pinned on pyrethroid-impregnated bednets. But then, once again insecticide resistance by the mosquitoes, combined as always with other factors, humbled us to recognize that for every tool we came up with, nature had a work-around.