The Pirbright Institute joined the Outreach Network in June. Their team is adding to the diversity of research groups looking into possible applications of gene drive approaches to tackle vector-borne diseases. This important work, focused on the mosquitoes that transmit viruses responsible for dengue, Zika and West Nile, will complement other efforts focused on malaria.
Pirbright’s Arthropod Genetics group, led by Professor Luke Alphey, is using gene drive to create proof-of-concept tools with the ultimate goal of reducing or eliminating mosquito-borne diseases. The group are primarily working with Aedes aegypti and Culex quinquefasciatus mosquitoes, which spread diseases of the flavivirus family.
By using a gene editing technology called CRISPR/Cas9, scientists are able to precisely insert DNA sequences into the mosquito genome, allowing them to test prototype components of synthetic gene drives that aim to control mosquito-borne diseases in two ways: The first is to modify mosquitoes to pass on genetic traits that result in infertile offspring, which causes a crash in the mosquito population, reducing the number of mosquitoes below the critical level needed to sustain disease transmission cycles. The second is to prevent mosquitoes from contracting diseases caused by flaviviruses through inserting gene drives that promote the expression of antiviral genes. These modifications would be inherited at an increased rate, resulting in a mosquito population that is no longer able to transmit the disease.
If you want to learn more about Pirbright’s work in this field, read their blog post on Prof. Alphey’s work.