By Dr. Rebeca Carballar-Lejarazú, University of California Malaria Initiative (UCMI)

Innovative genetic research is paving the way for groundbreaking solutions to combat vector-borne diseases including malaria, a persistent global health challenge that has seen a concerning rebound in incidence since 2015 due to emerging threats such as insecticide and antimalarial treatment resistance.

The University of California Malaria Initiative (UCMI) is a collaborative group of discovery scientists exploring novel tools including gene drive technologies to modify mosquito populations and contribute to the elimination of malaria. In our recent study, published in Proceedings of the National Academy of Sciences (PNAS), we demonstrated the potential of a dual effector gene strategy to mitigate malaria transmission from mosquitoes.

By Carolina Torres Trueba, International Legal and Administrative Manager, Island Conservation

Invasive alien species (IAS) pose a major global threat to nature, economies, food security and human health. According to findings published by IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) in the first global assessment report on IAS and their control, these species have played a major role in 60% of recorded extinctions worldwide and are causing more than US$423 billion annually in estimated losses to the global economy. These costs have at least quadrupled every decade since 1970.

Compiled by 86 experts from 49 countries over the course of four and a half years, the report sheds light on the catastrophic and growing harm caused by IAS to biodiversity and human wellbeing. Island ecosystems are confirmed to be particularly vulnerable, with 90% of global extinctions on islands mainly attributed to IAS.

By Leo Braack, Co-Chair of APMEN Vector Control Working Group; Senior Vector Control Specialist from Malaria Consortium

After many thousands of years of unabated onslaught by malaria decimating human populations across the world, convinced that the fevers originated from bad air associated with swamplands, Ronald Ross made the momentous discovery in 1897 that it was mosquitoes that transmitted this most unforgiving and rapidly deadly of afflictions. Since that year, humanity has relied on vector control as the most effective strategy to reduce the intensity of transmission and disease.

At first, we relied on control of larvae and breeding sites, then in the mid-19th century we sprayed massive amounts of the insecticide DDT and made considerable advances in tamping down malaria, at least until mosquitoes developed resistance to the chemical. By the 1990s we had found new optimism to think we might just be able to control malaria, which by 2007 developed into full-blown ambitions to eradicate the disease, our hopes pinned on pyrethroid-impregnated bednets. But then, once again insecticide resistance by the mosquitoes, combined as always with other factors, humbled us to recognize that for every tool we came up with, nature had a work-around.

Vector-borne diseases such as malaria, dengue, Zika and Chikungunya are responsible for over 700,000 deaths per year worldwide. While existing tools have helped save millions of lives, they are insufficient to eliminate these diseases and address emerging challenges, such as insecticide and drug resistance. This sobering fact underscores the pressing need to develop and explore new vector control approaches, such as genetically modified mosquitoes.

On August 20, we celebrate World Mosquito Day, a global commemoration of Sir Ronald Ross’ discovery in 1897 that female Anopheles mosquitoes are responsible for transmitting malaria parasites. But mosquitoes are also responsible for transmitting other potentially life-threatening diseases such as Zika virus, yellow fever, dengue, and chikungunya. Vector-borne diseases account for more than 17% of all infectious diseases worldwide and cause over 700,000 deaths every year. Malaria alone killed more than 600,000 people in 2021, and 60% of the global population is expected to be at risk of contracting dengue fever by 2080. 

World Mosquito Day presents us with the opportunity to raise awareness of the threat still posed by mosquito-borne diseases worldwide and to spotlight ongoing efforts in the fight against the world’s deadliest creature. This World Mosquito Day, we are highlighting the profiles of 13 researchers working on innovative approaches to tackle vector-borne diseases at the source by targeting mosquitoes.